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Abstract: Plants are sessile organisms whose survival depends on their strategy to cope with dynamic,
stressful conditions. It is urgent to improve the ability of crops to adapt to recurrent stresses in order
to alleviate the negative impacts on their productivity. Although our knowledge of plant adaptation
to drought has been extensively enhanced during the last decades, recent studies have tackled plant
responses to recurrent stresses. The present review synthesizes the major findings from studies
addressing plant responses to multiple drought events, and demonstrates the ability of plants to
memorize drought stress. Stress memory is described as a priming effect allowing a different response
to a reiterated stress when compared to a single stress event. Here, by specifically focusing on water
stress memory at the plant cycle level, we describe the different underlying processes at the molecular,
physiological and morphological levels in crops as well as in the model species Arabidopsis thaliana.
Moreover, a conceptual analysis framework is proposed to study drought stress memory. Finally, the
essential role of interactions between plants and soil microorganisms is emphasized during reiterated
stresses because their plasticity can play a key role in supporting overall plant resilience.

Keywords: water stress; resilience; plant-microbe interplay; priming; memory genes; soil legacy

1. Introduction

The world’s population should reach around 9.1 billion in 2050. An important increase
in food demand is already being observed [1]. At the same time, agricultural production is
facing the threat of climate change, which is characterized by more severe and frequent
stressful conditions that hamper plant growth. Population increase and climate change
are creating an unprecedent challenge in breeding plants that are more resilient to climate
fluctuations in order to feed the world population. In this context, drought has been identi-
fied as the most important and harmful stress to plant production worldwide, affecting
yield at several crucial moments during the crop cycle. While numerous studies have
characterized the effects of various drought intensities occurring at different plant develop-
mental stages [2,3], fewer have investigated the impact of recurrent drought periods on
plant development and growth [4–6].

Plants are able to “remember” a stress event and to modify their behavior in response
to a subsequent stress [6]. This so-called memory is defined as “an ability to access past
experience so that new responses incorporate relevant information from the past”, and
“information storage of previous signaling, with the ability to retrieve the information at a
much later time.” [7].

Lämke and Bäurle [8] defined three different types of stress memory: (i) somatic
stress memory, mitotically heritable that lasts only during the lifespan of an organism;
(ii) intergenerational stress memory that is observable only in the first stress-free offspring
generation and (iii) transgenerational memory that is meiotically heritable and observable
after more than two stress-free offspring generations. Somatic stress memory allows plants
that have experienced a stress event to benefit from stored information for days, weeks or
months and to adapt their response when facing a further stress. For example, this mecha-
nism has been well characterized in cold hardening [9]. Moreover, the information derived
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from a previous stress can be passed on from parents to offspring through intergenerational
and transgenerational stress memory [10,11]. This aspect is not discussed in the present
review which focuses only on memory within the plant life cycle.

Plant stress memory was first observed in the 1990s when researchers noted that some
plants developed an acquired systemic resistance to further infections after being exposed
to a pathogen attack [12–14]. Since then, it has been found that plant memory allows plants
to respond faster or stronger to a subsequent stress and may provide enhanced protection
when compared to naïve plants that have never encountered any stress. The first studies
exploring the topic led to major advances in improving the understanding of priming on
abiotic constraints by documenting physiological, proteomic, transcriptional and epigenetic
modifications leading to a stress imprint crucial for plant memory establishment [6].

In the present review, we illustrate how these mechanisms are interconnected during
recurrent drought events and can help the plant to be more resilient. Moreover, because
plants strongly interact with the soil and its components, we consider interactions between
the plant and soil micro-organisms as another possible piece of the puzzle leading to plant
drought memory. Indeed, soil microbial community composition and activity, as well as
soil physico-chemical properties, are shaped by soil legacy effects, and could influence
plant responses to a subsequent stress [15,16].

2. Water Stress Memory: From the Plant Side

Water stress memory has been explored in different crop species with specific focuses
ranging from molecular to physiological underlying processes (Table 1). Because water
stress events are likely to occur more frequently with climate change, plants may mobi-
lize water stress memory from early stages in their life cycle to minimize or alleviate the
negative impact of subsequent stresses on growth and production. In some cases, plant
priming resulted in a higher and faster response to a subsequent stress (Table 1). To date,
the general understanding of the mechanism is the following. First, a stress imprint is
established during the first stress event, which involves different physiological and molecu-
lar mechanisms such as the accumulation of stress-responsive osmoregulating metabolites
or the synthesis of protective proteins [9]. Second, during the post-stress recovery period
this stored information allows the plant to switch into a permissive state, that allows
a faster or stronger response to a subsequent stress. This information storage implies
(i) an accumulation of proteins in an inactive conformation [17,18] and of metabolites and
phytohormones, and (ii) epigenetic modifications through DNA methylation, histone mod-
ification or chromatin remodeling [9,17,19–21]. Chromatine plasticity, whether meiotically
inherited or not, has a crucial role both during immediate stress response and in long
term adaptation [22,23]. Third, during the subsequent stress, the prior recruitment of these
different compounds reduces the time for their synthesis in large amounts, thus allowing a
faster response [24,25].

Pioneer work in Arabidopsis thaliana and Zea mays [25–27] showed that plants display
a transcriptional stress memory in response to multiple exposures to drought, revealing
the existence of memory genes. These genes are defined as producing different levels of
transcripts in response to the first and the second stress, but basal levels of transcripts
similar to that of the non-primed plants during the recovery period [25]. Following this
concept, Figure 1 summarizes the classification of “memory genes” and “non-memory
genes” into four categories according to the regulation of their expression during the second
stress period, when compared to the first period. The expression of the [+/+] (or [−/−])
memory genes (Figure 1a) is induced (or repressed) during both the first and the second
stresses when compared to the control, with priming increasing differential expression
in the subsequent stress. Some memory genes can also display the opposite regulation
in response to the first and second stresses. This is the case (i) for the [−/+] memory
genes (Figure 1b), the expression of which is down-regulated during the first stress but
up-regulated during the second stress, and (ii) for the [+/−] memory genes, the expression
of which is up-regulated during the first stress but down-regulated during the subsequent
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stress. On the other hand, genes producing similar levels of transcripts in response to each
stress are considered as “non-memory genes” and are annotated as [+/=] or [−/=] genes
(Figure 1d) [26]. This succession of transcriptional events is translated into physiological
changes [18], which are detailed below and summarized in Figure 2.
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Table 1. Studies addressing recurrent water stresses in different crop species. For each study, the species, genotype and
nature of each water stress is provided. FC, Field capacity; VWC, Volumetric Soil Water Content; SWC, Gravimetric Soil
Water Content; DAS, Day After Sowing; DAP, Day After Planting.

Plant Species (Genotype (s))
PRIMING

When?
How?

SECOND STRESS
When?
How?

THIRD STRESS
When?
How?

Reference

Triticum aestivum
(Winter wheat)

(Luhan-7, Yuangmai-16)

Tillering or jointing
Moderate drought

(55–60% FC)

Postanthesis
Severe drought

(35–40% FC)
Abid et al., 2016 [28]

Triticum aestivum
(Winter wheat)

(Luhan-7, Yuangmai-16)

Tillering
Moderate drought

(58–60% FC)

Postanthesis
Severe drought

(38–40% FC)
Abid et al., 2017 [29]

Triticum aestivum
(Winter wheat)
(Yangmai-16)

Seedling
Osmopriming

(PolyEthylene Glycol, PEG)

Tillering or jointing
Severe drought

(35–40% FC)
Abid et al., 2018 [30]

Oriza sativa (Rice)
(BRS Querência,
AN Cambara)

Vegetative stage V5
10% VWC vs. 40% VWC

Preflowering stage R1-R2
10% VWC vs. 40% VWC Auler et al., 2017 [31]

Oriza sativa (Rice)
(BRS Querência,
AN Cambara)

Vegetative stage V5
10% of pot capacity, during

7 days

Preflowering stage R1-R2
10% of pot capacity, during

7 days
Auler et al., 2021 [32]

Solanum tuberosum (Potato)
(JSY, CIP 706205)

One-month old plant
Decrease of 10 to 20% of SWC

One day after priming
Decrease of 10 to 20% of SWC Chen et al., 2020 [33]

Arabidopsis thaliana Three-weeks old plant
Air drying: 2 h at 22 ◦C

22 h after priming
Air drying: 2 h at 22 ◦C

22 h after second stress
Air drying: 2 h at 22 ◦C Ding et al., 2012 [25]

Zea mays (Mays)
(B73)

Two-weeks old seedling
Air drying: 2 h at 22 ◦C

22 h after priming
Air drying: 2 h at 22 ◦C Ding et al., 2014 [26]

Coffea canephora (Cofee)
(clone 120 and 109)

9 month old plants
25% FC during 14 d

≈ 10 days after priming
25% FC, during 14 d

≈ 10 days after
second stress

25% FC, during 14 d
Guedes et al., 2018 [34]

Glycine max (Soybean)
(Daepoong)

7 days old plants
Water withholding during

4 days

One day after priming
Water withholding during

4 days
Kim et al., 2020 [35]

Arabidopsis thaliana
(Transgenic recombinant

aequorin)

Seedling
Hydrogen peroxide

Manitol

6 to 7 days-old seedling
Hydrogen peroxide

Manitol
Knight et al., 1998 [36]

Beta vulgaris (Sugar beet)
(Pauletta OVK, 8GK)

35–54 DAS
Water withholding

86–102 DAS
Water withholding

135–151 DAS
Water withholding Leufen et al., 2016 [37]

Oriza sativa (Rice)
(Zhonghua 11)

4-weeks old seedling
Air drying: 80 min at 28 ◦C

22 h after priming
Air drying: 80 min at 28 ◦C

22 h after second
Air drying: 80 min at 28 ◦C Li et al., 2019 [38]

Arabidopsis thaliana
(Wt, cfl mutant)

Three-weeks old plant
Air drying: 90 min at 22 ◦C

22 h after priming
Air drying: 90 min at 22 ◦C

22 h after second stress
Air drying: 90 min at 22 ◦C Liu et al., 2014 [39]

Saccharum spp. (Sugarcane)
(IACSP94-2094)

55–days old plant
PEG for 5 days

3 days after priming
PEG for 5 days

3 days after second
PEG, during 5 days Marcos et al., 2018a [40]

Saccharum spp. (Sugarcane)
(IACSP94-2094)

6-month old plant
20% vs. 60% VWC, during

9 days

6 days after priming
20% vs. 60% VWC, during

9 days

6 days after second
20% vs. 60% VWC, during

9 days
Marcos et al., 2018b [41]

Solanum tuberosum (Potato)
(Unica, Sarnav, Désirée)

After tuber initiation or Seed
tuber from previous

experiment
50% FC

55 DAP
50% FC Ramirez et al., 2015 [42]

Arabidopsis thaliana
(Col-0)

4 leaves stage
5 mM NaCl

10 days after priming
Water withholding for 2 weeks Sani et al., 2013 [11]

Arabidopsis thaliana
(Col-0, abf, snrk and aba

mutants)

3-weeks old plant
Air drying: 90 to 120 min at

22 ◦C

22 h after priming
Air drying: 90 to 120 min at

22 ◦C
Virlouvet et Fromm, 2015 [43]

Zea mays (Mays)
(cultivar B73)

2-weeks old seedling
Air drying: 90 min at 22 ◦C

22 h after priming
Air drying: 90 min at 22 ◦C Virlouvet et al., 2018 [18]

Triticum aestivum
(Spring wheat)

(Vinjett)

Stem elongation (37 DAS)
or

Seedling (27 DAS) and Stem
elongation (37 DAS)

Water withholding for 8 days

15 days after anthesis
Water withholding for 8 days Wang et al., 2014 [44]

Oriza sativa (Rice)
(Zhonghua 11)

4-weeks old plant
Air drying: 80 min at 28 ◦C

22 h after priming
Air drying: 80 min at 28 ◦C

22 h after second
Air drying: 80 min at 28 ◦C Yang et al., 2020 [45]
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2.1. Photosynthesis and Energy-Related Mechanisms

Changes in photosynthesis mechanisms and energy balance have been highlighted in
several studies addressing water stress memory. The responses differ based on whether
the plants have vegetative storage organs (e.g., Beta vulgaris) or not, which implies that
depending on the sink-source relationships during stress, physiological and biochemical
plant parameters could be impacted differently [37]. In Triticum aestivum, plant priming (i.e.,
exposure to a first stress) increased chlorophyll and ribulose 1,5 bisphosphate carboxylase
content as well as photosynthetic efficiency during a second stress. Thus, priming induces
a higher maintenance of photosynthetic apparatus during the subsequent stress [28–30].
These contrasted physiological responses following priming can be related to different
molecular responses via transcriptional memory [18,25,26,43]. Indeed, in Zea mays and
Arabidopsis thaliana, among the 556 memory genes common to the two species, 18% were
related to photosynthetic activity and energy balance. In maize, [=/−] and [=/+] memory
genes (Figure 1c) encode proteins involved in light harvesting, energy transport, non-
photochemical quenching and overall photosynthesis, including enzymes of the Calvin-
Benson-Bassham cycle [18]. In addition, the down-regulation of a memory gene encoding
a chloroplastic ATP synthase during the second stress suggests the role of a transcriptional
component in altering energy-dependent quenching sensitivity, ultimately leading to
the protection of the photosynthetic apparatus from drought [18]. Similar results were
observed in Glycine max, for which some drought-repressed memory genes were also
related to photosynthesis activity [35].

Depending on crop biomass partitioning to the different organs, physiological and bio-
chemical plant parameters may be impacted differently during stress [37]. In Beta vulgaris
exposed to three water stress events, all stresses reduced plant chlorophyll content, but the
magnitude of the effect was lower during the second stress and even lower during the third
stress [37]. Meanwhile, all three stresses reduced net photosynthesis and transpiration to
the same extent. Thus, although this process cannot be generalized to all situations, a first
water stress can improve plant response to a subsequent stress by dampening the impact
of the second stress on plant photosynthesis and energy mechanisms, thereby sustaining a
better carbon status.

2.2. Osmotic Adjustment and Plant Water Status

Under water deficit, plant ABA synthesis induces stomatal closure through the reg-
ulation of Ca2+ in the guard cells, preventing water loss. The regulation of stomatal
aperture in guard cells is also largely dependent on the expression of members of the
SnRK2 gene family that mediate both ABA-dependent and independent responses [43,46].
In parallel, the accumulation of solutes frequently involved during water stress, such as
proline [47], compensates the drop in water potential associated with decreased water
content in plant tissue.

Osmotic adjustment for water status maintenance is involved in water stress plant
memory. In primed Arabidopsis thaliana plants, an increase in the magnitude of the
cytosolic free Ca2+ response to subsequent osmotic stress has been observed and could be
involved in better tolerance to subsequent abiotic stress [36]. Virvoulet and Fromm [43]
showed that both physiological and transcriptional memories occurred in Arabidopsis
thaliana guard cells in response to repeated dehydration stresses. Moreover, transcriptome
analyses upon repetitive stress exposures in Zea mays revealed that a large proportion
of the [−/−] and [+/+] memory genes encoded proteins with membrane-associated
functions such as dehydrins [+/+], transmembrane transporters for inorganic phosphate
and sucrose [−/−], and regulators of water and potassium uptake and transport [26].
Similarly, enzymes involved in osmolyte synthesis and proline biosynthesis were encoded
by [+/+], [−/+] and [+/−] memory genes in both Arabidopsis thaliana and Zea mays [25,26].

In primed Oriza sativa plants, proline accumulation was increased compared to naïve
plants [31], which could contribute to the enhancement of leaf water potential and the
maintenance of plant water status during the subsequent drought.
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2.3. Cellular Protective Functions: Detoxifying Systems and Chaperones

Protective and detoxifying functions are crucial for plant stress memory because
they minimize the impact of drought-induced oxidative stress by maintaining cellular
metabolism. Studies by Abid and collaborators [28–30] showed in Triticum aestivum plants
that priming enhanced photoprotection during the second stress via a better detoxifying
system. This included lower reactive oxygen species (ROS) accumulation and lipid peroxi-
dation, and a higher activity of antioxidant enzymes such as catalase, ascorbate peroxidase,
glutathione reductase and superoxide dismutase.

Moreover, in primed Silene dioica plants, chlorophyll a/b ratio is higher after a re-
peated stress than after a single stress, suggesting a decrease in ROS production and
photo-oxidative stress if a subsequent stress occurs [48]. In Arabidopsis thaliana, Zea mays
and Glycine max, [+/+] memory genes encoded proteins related to protective functions
(dehydrins, HSP, chaperones implicated in protein folding) and metabolic enzymes for the
synthesis of protective molecules (i.e., osmolytes) [25,26].

Plant water stress memory thus involves improving the detoxifying system thanks
to enhanced antioxidant enzyme activities and better protective functions via chaperone
proteins, allowing plants to improve their responses to oxidative stress and to sustain
protein activity.

2.4. Epigenetic and Molecular Mechanisms Involved in Transcriptional Memory Establishment

Epigenetic modifications related to a given stress modulate gene expression during a
subsequent stress. They can contribute to transcriptional memory through memory genes,
non-memory genes and transcription factors.

Two distinct marks have been characterized on memory genes during recovery periods
that followed dehydration stress periods in Arabidopsis thaliana [25]. These memory marks
include histone modifications, such as the maintenance of a high level of trimethylated
histone H3Lys4 nucleosomes (H3K4me3) and stalled Ser5P RNA Polymerase II (Ser5P
pol II) at stress memory genes during recovery, even though their transcription level
was low during recovery. These epigenetic marks play a role in transcriptional memory,
since they are enriched during stress periods and maintained at a certain level during
recovery periods [5]. The accumulation of H3K4me3 is not specific to drought memory,
as it has also been observed in heat stress memory [49] and salinity [11]. In contrast,
elevated levels of Ser5P pol II have been poorly described in plants but were shown to
be prevalent in genes involved in development and response to stimuli in animals [50].
The factors or genes that cause ser5P pol II and H3K4me3 association with memory genes
and transcriptional stress memory are still unknown. The histone H3K4 methyltransferase
ATX1 (TRITHORAX-LIKE 1) is necessary but not sufficient, as the transcriptional memory
response in the atx1 mutant is attenuated but not eliminated. Similarly, the involvement of
ABA and ABA-regulated transcription factors such as AREB1, AREB2 (ABSCISIC ACID–
RESPONSIVE ELEMENT BINDING PROTEIN 1 and 2, respectively), and ABF3 (ABSCISIC
ACID RESPONSIVE ELEMENTS-BINDING FACTOR 3) are important for the magnitude of
induction of some memory genes, but not essential for the memory response to occur [25].
More recently, the potential implication of DNA-methylation in drought stress-memory
was demonstrated in the resurrection plant Boea hygrometrica [51]. Up-regulation of memory
genes including pre-mRNA-splicing factor 38A, vacuolar amino acid transporter 1-like,
and UDP-sugar pyrophosphorylase, was associated with promoter methylation variations
in the CG and CHG contexts. Although these epigenetic modifications are generally not
meiotically inherited, they can, in some cases, be passed on to the next generation and
form a transgenerational memory. This mechanism could be of great interest for breeding
purposes, especially towards the improvement of long-term plant adaptation to fluctuating
environments [10,52].

Non-memory genes are involved in transcriptional memory by playing a role in the
implementation of epigenetic marks on memory genes. Non-memory genes have been
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identified, such as a [−/=] putative methyltransferase with a DNA-binding domain and a
[+/=] gene annotated “nucleosome remodeling factor” [34].

The activity of transcription factors (TF) is involved in stress memory, although the
transcriptional memory pattern of a TF does not necessary determine the memory pattern
of its targets (even if direct). For example, the memory expression pattern of the bHLH
MYC2 transcription factor under repeated dehydration stresses did not correlate with
the non-memory expression pattern of its target gene RD22 [27]. Both in Zea mays and
Arabidopsis thaliana, about 10% of the drought stress memory genes encoded TFs, but some
families were identified as species-specific. For instance, the NAC (NAM, ATAF and CUC)
family TFs with a [+/+] signature and the integrase-type AP2/ERF (APETALA 2/ERE
binding factor) family members with a [+/−] signature were highly represented in maize,
while TFs from the AP2/ERF, bHLH (basic helix-loop-helix) and ZF (Zinc finger) families
were more specific to Arabidopsis thaliana [26].

One additional level in memory gene regulation could involve small RNAs, in partic-
ular microRNA (miRNA), as shown for heat stress (HS) memory. In Arabidopsis thaliana,
thermotolerance is compromised in miRNA pathway mutants such as ago1 (argonaute1)
and dcl1 (dicer-like1) [53]. Functional analysis demonstrated that mir156 is specifically
required for HS memory through the repression of its targets SPL2 (SQUAMOSA promoter
binding protein-like 2) and SPL11. In addition, mir156 over-expression enhanced and
prolonged the HS memory effect [53]. In Medicago sativa (alfalfa) mir156 over-expressor
lines showed improved drought stress tolerance [54], and drought-responsive miRNAs
have been identified in numerous crop species including legumes [55], cereals ([56] for
a review) and Solanum lycopersicum [57]. To what extent miRNA could mediate drought
stress memory remains to be elucidated.

2.5. Plant Biomass and Productivity

Plant biomass production and yield are the main macroscopic indicators of drought
stress memory, as they integrate the different molecular mechanisms and physiologi-
cal processes involved in plant response to repeated stresses. For instance, primed
Triticum aestivum plants at the tillering stage produced higher yields than non-primed
plants after subsequent stresses, likely through modulations of growth hormone levels (i.e.,
higher cytokinin, indole-3-acetic acid, gibberellin contents, and lower ABA content in the
primed plants) [29]. Priming at the seed stage can have long-lasting effects. Osmopriming
Triticum aestivum seeds with polyethylene glycol (PEG) before the occurrence of drought at
tillering and jointing stages led to sustained relative growth rate during stress and higher
final grain yield production [30].

However, drought stress memory cannot be generalized, since its establishment
is species and genotype-dependent. The transcriptional memory differences that exist
between Arabidopsis thaliana and Zea mays subjected to repeated dehydration stresses (de-
scribed above) may reflect differences in photosynthetic and related metabolism functions
between C3 and C4 plants [26], while we hypothesize that differences in physiological
memory between crops allocating more of their resources to non-reproductive organs
(e.g., tuber) versus those remobilizing resources towards seeds could be explained by
contrasted source-sink relationships. Differences in drought stress memory abilities be-
tween genotypes have been highlighted in several species. In Solanum tuberosum, although
priming induced an increase of tuber amino acid content in the two varieties Sarnav
and Unica, priming only resulted in a higher tuber yield for the Sarnav variety [42]. In
Triticum aestivum, the higher tolerance of the Luhan cultivar than Yuangmai cultivar has
been related to a higher stress memory ability in response to recurrent droughts [28].

2.6. Trade-off between Stress Memory and Stress Forgetfulness (Memory Resetting)

Plant priming induced by a preexposure to a first stress can allow a faster or a more
intense response to a subsequent stress [24], and its cost is estimated to be relatively low
compared to naïve plants which constitutively express stress-related genes [6,9,58,59]. Yet,
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sustaining a primed state via short-term (morphological acclimation, physiological changes,
molecular and metabolic alterations) and long-term mechanisms (epigenetic processes)
is energy-consuming and can negatively impact other biological processes such as plant
growth (including photosynthesis and resource allocation) or development [22]. As such,
it can be advantageous to learn to forget. Resetting (aka stress forgetfulness) has been
proposed as the main plant strategy to fine-tune growth in fluctuating and unpredictable
environmental conditions [22]. Throughout the plant cycle, alternating periods of estab-
lishing memory and resetting it could be driven by RNA metabolism, post-transcriptional
gene silencing or RNA-directed DNA methylation [22]. To our knowledge, the resetting
of a plant primed state after a drought event has not been studied yet. However, in the
case of heat stress memory, resetting involves autophagy-mediated degradation of HSP
proteins during recovery in order to reset the cell proteome [60]. Thus, stress memory
establishment and its resetting appear to be coordinated by fine-tuned mechanisms that
modulate memory duration (e.g., four days in a study of heat stress memory) [60]. As a
result, this process contributes to alleviate the negative impact of recurrent stresses on plant
biomass production [9]. Too little tangible evidence is currently available to understand the
dynamics and the regulation of the trade-off between stress memory and stress resetting,
thus opening a huge science front for the coming years.

To that end, we propose a conceptual analysis framework (Figure 3) including stress
memory, stress forgetfulness and recovery memory that could help in understanding the
dynamics of these processes. This conceptual framework follows the general concept
initially developed by Couchoud et al. [61], which involves the characterization of different
parameters during both water stress and recovery periods: impact of the first stress,
dynamics of the recovery after each stress, and duration of stress memory. Finally, a better
characterization of the regulatory dynamics underlying stress memory would make it
possible to predict plant responses to multiple stresses based on process-based modelling.
Moreover, thanks to technical advances and the increased availability of more powerful
tools and methods, a deeper understanding of the dynamics of stress memory/forgetfulness
will be possible. These tools include high-throughput phenotyping of shoots and roots
that allow screening a large number of genotypes under controlled conditions (major
plant phenotyping centers are part of the International Plant Phenotyping Network;
www.plant-phenotyping.org, accessed on 7 September 2021). Molecular tools and methods
based on multiomics and systems biology approaches can help in identifying the main
regulators that are necessary for genetic improvement [62]. Recent advances in epigenetics
allowed the construction of “epi-populations” that can reveal “epi-alleles” whose variants
can also be considered as breeding targets [10]. Then, once the candidate genes have been
identified, genome editing tools such as CRISPR-Cas9 [63] will be useful for gene functional
validation. Finally, speed-breeding techniques, by shortening the growth cycle of plants,
would greatly accelerate the genetic improvement of crops [64].

3. Water Stress Memory and the Plant x Microbiome Interplay

Soil microorganisms establish strong interactions with plants in relation to nutrient
acquisition, protection against pathogens and beneficial physico-chemical changes in the
soil. Soil moisture is a key driver of microbial community composition and activity. Due to
the much more rapid turnover of soil microorganisms compared to plants, individual-level
memory is less relevant for soil microbes at the community scale. Instead, the term “legacy”
is typically used for describing the effects of changes in environmental conditions on soil
microbial community over time [65].

www.plant-phenotyping.org
www.plant-phenotyping.org
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Figure 3. Conceptual framework of plant water stress memory and putative recovery memory. (a) A first stress (#1) induces
the decrease of a value of a trait with a given intensity (Ψ #1) and its recovery during rewatering until plateauing. During a
subsequent water stress (#2), the intensity decrease (Ψ #2) may be less important than during the first stress. During each
re-watering period, the recovery capacity may be characterized by different variables (in green): recovery initiation latency,
recovery rate, return time to plateau, and delta (∆, the difference in trait value at the plateau between well-watered plants
and those under water stress). During the second recovery, the trait value increase may be closer to the control value (∆ #2)
than after the first recovery (∆ #1), implying a putative recovery memory process. (b) A stress memory can be established
when the stress imprint is stored until the beginning of the second water deficit period (case 1). A stress memory cannot
occur when the stress imprint is followed by memory resetting (stress forgetfulness) such as in case 2.

Microbial adaptation to drought periods followed by rewetting involves different
coping mechanisms, such as sporulation or the production of osmolytes to resist osmotic
stress, which are related to life-strategies along a drought-resistant to opportunistic gra-
dient [66]. In addition to the inherent large and rapid change in soil water potential,
rewetting triggers C and N mineralization bursts that constitute an additional modifica-
tion in soil environmental conditions [67,68]. Advances in molecular microbiology over
the last decades, based on next-generation sequencing and including metagenomics and
metatranscriptomics, have shed light on the dynamic responses of soil microorganisms and
their activity to dry-wet cycles. Exposing a microbial community to drought can improve
its resistance to subsequent drought and rewetting events [69,70]. More generally, legacy
effects of past drought conditions can shape the response of soil microbial communities to
future droughts [65,70,71]. As a consequence, microbial legacy can affect major soil func-
tions such as decomposition [72] or decomposition-related mechanisms [73,74], which will
directly influence the plant’s nutritional status and likely affect ecosystem properties. For
example, the effects of an anomalously warm year can contribute to changes in ecosystem
functioning which are related to plant-microbial interactions, and can persist several years
after a drought event [75].

Do stress legacy effects of drought on microorganisms modify the response of plants
to a subsequent stress? Microbial communities that are adapted to water stress can improve
plant fitness and resistance to drought [76–78]. Similarly, microbial communities subjected
to previous drought conditions can alter the direction of plant-soil feedback [79]. Con-
versely, do plant memory effects shape the response of soil microorganisms to a subsequent
drought? Increased rhizodeposition under moderate drought stress is a generally observed
trend, despite species-specific variability, which is expected to directly stimulate microbial
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community functioning [80]. Under suboptimal conditions, plants can select beneficial
microorganisms in their rhizosphere through the exudation of different compounds that
are available for soil microorganisms [81]. For instance, root secretions of hormones in-
volved in plant immune responses, such as salicylic acid and jasmonic acid, can shape
rhizosphere and root microbiome assembly and functionality [77]. The enrichment of soil
with plant-protective microorganisms can be beneficial for the plant during its cycle, but
also for further plant generations growing in the same soil [82].

The soil legacy effect could thus be a key driver of terrestrial plant community compo-
sition and productivity, with effects that persist over time [76]. We suggest they should
explicitly be taken into account when addressing an extended framework of plant stress
memory. The challenge, however, is that microbial legacy takes place over longer periods
of time than plant memory effects, since time is required for changes in composition and
activity to become established in a fundamentally dynamic community.

4. Conclusions

Plant water stress memory involves processes associated with photosynthesis, en-
ergy mechanisms, osmotic adjustment, cellular protective functions, and water status
maintenance. Memory mechanisms are best known at the shoot level, yet it is essential
to characterize those at the root level. Indeed, the role of the root system in water and
nutrient uptake is crucial for plant growth, development and yield. From a wider point
of view, the close interaction between root system memory and the microbiome legacy in
the soil represents the next challenge to tackle. Most studies on plant memory have been
conducted on cereal or vegetative storage crops, while legume stress memory has scarcely
been addressed. However, legumes are a model of choice for understanding the memory
of plants in interaction with soil microorganisms, due to their ability to establish symbiotic
relationships with rhizobium and mycorrhizal fungi. A more holistic and dynamic ap-
proach of plant resilience would i) bring plant-microbial interactions into the picture and ii)
improve the understanding of recovery memory after a stress period and the fine trade-off
between plant memory and forgetfulness. Increased knowledge on plant resilience, that
includes stress memory, thus appears to open up new perspectives in the general context
of food security under a changing climate.
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